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Unsteady Hybrid Vortex Technique for Transonic Vortex Flows
and Flutter Applications

Osama A. Kandil

This report covers the progress of research work performed under this

grant in the period of February 16, 1986 to October 15, 1986. During this
period of eight months, the following tasks have been accomplished:

1.

Integral Equation Method of Full Potential Equations

The integral equation method has been extended to treat transonic flows
around airfoils, This is achieved by adding a. volume integral term
(corresponding to the full compressibility effect) to the classical
surface integral solution. The gradient terms in the volume integral term
are calculated by using mixed type differencing which is consistent with
the mixed nature of the transonic flow. The solution is obtained through
successive iteration cycles for subcritical flows. In addition and for
transonic flows, mixed type differencing is used and the Rankine-Hugoniot
relations are satisfied across the captured shock. Moreover, shock panels
are explicitly introduced and fitted to sharpen the captured shock.

The method is applied to airfoils in subcritical and critical flows and
the results are in good agreement with the experimental data and the
finite-difference solutions of the full-potential and Euler equations.
The method has been applied eariler to transonic vortex-dominated three-
dimensional flows using a TJlow-order distribution of vortex panels.
Currently the method is extended to solve for unsteady transonic flows
around pitching airfoils and to solve for the steady and unsteady
transonic flows around three-dimensional wings.

The following papers have been published or submitted for presentations
( copies are attached to this report):

a. "Transonic Flow Computation Using the Integral Solution of the Full
Potential Equations," Kandil, 0. A. and Hong, H., submitted for
presentation at the AIAA Fluid and Plasma Dynamics Conference,
Honolulu, Hawaii, June 8-10, 1987,



b. "Finite-Volume and Integral-Equation Techniques for Transonic and
Supersonic Vortex-Dominated Flows," Kandil, 0. A., Chuang, A. and
Chu, L-C., ICAS-86-1.5.4, London, England, September 7-12, 1986, pp.
629-640 (Vol. 1).

c. "Transonic Vortex Flow Past Delta Wings-Integral Equation Approach,"
AIAA Journal, Vol. 24, No. 11, 1986, pp. 1729-1736.

Euler Equations Solution Using Central-Differencing Finite Volume Solver

with Second and Fourth Order Dissipation Terms

During thms period, we have imp1eﬁented Jameson's Central-Differencing
Finite Volume Method, which uses Runge Kutta time stepping with second and
fourth order explicit dissipation terms, into two computer codes to sclve
for vortex dominated flows over a wide range of Mach numbers which
includes subsonic, transonic and supersonic regimes.

The first computer code solves for the supersonic vortex-dominated flows
which is an exact conical flow for steady inviscid problems. The unsteady
Euler equations are used to study conical supersonic vortex-dominated
flows around delta wings with sharp and round edges. For sharp edges,
separated flow solutions have always been obtained while for round edges,
separated and attached flow solutions have been obtained. The solution
for round edges is dependent upon the level of numerical dissipations and
the grid fineness. We are the first to conclusively show the solution
dependence upon the numerical dissipation for round edges. Recently, we
have shown two additional parameters upon which the solution depends.
These are the total pressure loss due to the enropy production and the
accuracy of enforcing the boundary conditions.

The second computer code solves for the three-dimensional flows in
subsonic, transonic and supersonic flows. The code 1is fully vectorized
and is very efficient (For 130,000 grid points, it takes 3,000 CRU for 900
iteration cycles until convergence -- average residuals of 1074 - on the
VPS 32). The code has been used to solve for transonic and subsonic
vortex - dominated flows and for supersonic vortex-dominated flows as
well, The results compare well with the experimental results at the chord
stations downstream of the 18% chord station with 130;000 grid points.
Fine grids (300,000 points) are being tested.




Work 1is underway to solve for the unsteady pitching and rolling
oscillations with time accurate schemeS.

The results of this work have been reported in the following papers
(copies are attached with this report):

a. "Numerical Dissipation Effects in Finite-Volume Euler Solutions for
Conical Vortex-Dominated Flows," Kandil, 0. A. and Chuang, A.,
Springer Verlag, Computational Mechanics, Theory and Applications,
Edited by G. Iagawa and S. Atluri, Tokyo, Japan, May 1986, pp. XI57-
X1.64 (Vol. II). '

b. "Influence of Numerical Dissipation in Computing Supersonic Vortex-
Dominated Flows," Kandil, 0. A. and Chuang, A., AIAA 86-1073, May
1986. Accepted for publication in AIAA Journal.

c. "State of the Art of Computational Vortex Flows," Kandil, 0. A. and
Chuang, A., SIAM National Meeting, Boston, Mass., July 1986,

d. "Finite-Volume Euler and Navier-Stokes Solvers for Three-Dimensional
and Conical Vortex Flows Over Delta Wings," Kandil, 0. A. an Chuang,
A., AIAA 87-041, January 1987.

Presentations and Briefings:

The P.I. has given three presentations and briefings at the UAB-NASA
Langley Research Center:

a. Briefing to Dr. Eligh Turner, Wright Patterson AFB, on the Vortex-
Dominated Flow work,

b. Briefing during Division and Directorate Annual Review of the UAB
Research work.

c. Presentation to McDonald Douglas visitors to NASA Langley Research
Center on the Steady and Unsteady Vortex-Dominated Flow research work,
September 17,1986,




4.

Organizing and Chairing Sessions on Vortex Dominated Flows

The P.I. has organized and chaired the following sessions in the vortex
flow ared:

a. "Vortex Flows," AIAA 24th Aerospace Sciences Meeting, January 1986.
b. "Computational Vortex Flows," SIAM National Meeting, July 1986.

c. "Vortex Dominated Flows I & II," AIAA 25th Aerospace Sciences Meeting,
January 1987.
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Extended Abstract

Transonic Flow Computation Using the Integral Solution’
of the Full Potential Equation

Osama A. Kandil™ and Hong Hu™*
Department of Mechanical Engineering and Mechanics
01d Dominion University, Norfolk, VA 23508

Abstract

The well developed surface panel method is extended by adding a volume
integral term allowing the calculation of the full effect of
compressibility. The full effect of compressibility is calculated by using
mixed type finite difference scheme consistent with the mixed nature of
transonic flow. The solution is obtained through successive iteration cycles
for subcritical flows and for critical flows the solution is obtained through
satisfying the Rankine-Hugoniot relations across the captured shock in
addition to the successive iteration cycles. Shock panels are introduced to
sharpen the captured shock. The method is applied to airfoils in subcritical
and critical flows and the results are in good agreement with the experimental
data and finite-difference solutions of the full-potential and Euler
equations.

t This research work is supported by NASA Langley under Grant No. NAG-1-S91.
Professor, AIAA member.
** Ph.D Graduate Research Assistant, AIAA member.




1. INTRODUCTION AND BACKGROUND

At the present time, computational inviscid flow prediction methods
available to the aerodynamic designer can be devided into two types: first,
the integral equation methods more commonly known as panel methods or field
panel methods of which the first was that developed by Hess and Smith [1] and
second, field methods (which encompass Finite-Difference, Finite-Volume and
Finite-Element methods) which have been extensively developed for transonic
flow following the work of Murman and Cole [2].

A brief review of the state of the art of computational transonic

inviscid flows will be presented here.

(a) Field Methods in Steady Inviscid Transonics

The research for inviscid transonics has been made in major three ways:
(i) the transonic small-disturbance (TSD) formulation, (ii) full-potential
(FP) formulation and (iii) Euler equation formulation which includes the
rotationality effect.

The field methods of transonics are the new ones, having essentially
started in 1970. Murman and Cole [2] were the first to achieve a stable
transonic solution for the two-dimensional TSD equation by using the concept
of type-dependent differencing. Soon after, this procedure was extended to
three dimensional flows for swept-wing calculations by Ballhaus and Bailey [3]
and wing-cylinder calculations by Bailey and Ballhaus [4]. At about this same
time, numerical procedures for solving the transonic FP equation were being
developed with suitable mapping procedures. Notable contributions are due to
Stegar and Lomax [5] and Garabedian and Korn [6], both with nonconservative FP
formulations for airfoil configurations. The first three-dimensional

calculation (nonconservative) was introduced by Jameson [7] and was used to




solve the transonic flow about wings. Subsequently, a solution procedure for
the conservative form of the FP equation was introduced by Jameson [8] and
extended to three dimensions by Jameson and Caughey [9, 10].

Much of the recent work in steady transonic potential field methods has
been devoted to finding better ways of solving the full potential equation in
conservation form and to the development of more computationally efficient
relaxation schemes, such as fully implicit approximate factorization (AF) or
multigrid. Recently, several methods which use the strong conservative form
of the unsteady Euler equation have been developed to solve steady and
unsteady transonic flows. A typical method for steady, two-dimensional
transonic flow is developed by Jameson [11]. Basic research involving the
Euler formulation for steady transonic applications is currently increasing
and is expected to continue to do so as the potential algorithms enter a more

production-oriented research phase.

(b} Integral Equation Methods in Steady Inviscid Transonics

Although a great deal of progress has been made in solving nonlinear
fluid flow problems by finite-difference methods, these methods have not yet
proved to be easily adaptable to complex three-dimensional surfaces. The
major technical obstacle to computing inviscid transonic flows about complete
aircraft is the difficulty in generating suitable grids. More recently, the
difficulties and relatively larger computation time associated with field
methods prompted a number of workers to reconsider the application of integral
equation methods to transonic flows.

Panel methods for subsonic and supersonic aerodynamic applications have
been in use in the aerospace community since the 1960s and have become

indispensable tools in aerodynamic analysis and design.




In the low-speed regime, methods which are directly or indirectly
obtained from the Green's function solution (IEM) have been developed for
steady and unsteady 3-D vortex flows. Existing methods of this type are the
Nonlinear Discrete-Vortex methods [12-15], the Double-Panel methods [16-20],
the Vortex-Panel method [21-22] and the Velocity-Potential-Panel method
[23]. Flow compressibility has been accounted for by using the Prandtl-
Glauert transformation, based on the free-stream Mach number.

Exact integral equation formulation of the 2-D subsonic full potential
problem have been studied by Luu et al. [24] and Stricker [25]. However,
these methods are not capable of dealing with flow with shocks.

Relatively little (compared with field methods) attention has been paid,
so far, to integral equation methods for transonic flows. certain approximate
IEM formulations of the transonic small-perturbation problem were studied
already in the pre-computer era, notably by Oswatitsch [26] and Spreiter
[27]. Computerized and extended versions of the approximate IEM were
developed later by, amongst others, Norstrud [28], Crown [29] and Nixon
[30]. It should be remarked that the approximate IEM's mentioned above, are
all based on a special, partial-integration form of the integral equation for
the transonic small-distrubance problem, which enables easy implementation of
approximating assumptions on the decay of the perturbation velocity away from
the body. The approximating assumptions on the decay of the perturbation
velocity and the shock-fitting character of these methods are not considered
to be competitive with FDM's.

Later, Piers and Slooff [31] developed a IEM based on transonic small-
distrubance theory. Their method does not contain any approximating
assumptions and, through the introduction of artificial viscosity and

directional bias, has a shock-capturing capability similar to that of current

FDM's,



The development of the numerical methods based on the full potential
equation has been made during the last two years. Kandil and Yates [32]
developed a IEM for steady transonic flows past delta wing, the results show
that the method is promising and efficient. Oskam [33] developed a panel
method for the full potential equation applied to multicomponent airfoils.
This method 1is accomplished by adding a field distribution of source
singularities to the conventional distribution of singularities over the
boundaries of the field. At about the same time, Erickson and Strande [34]
used Green's Third Identity as a means to extend panel method to non-linear
potential flow, in which the concept of artificial den:ﬂ'ty is employed and
optimization technique is used to make sure the total compressibility is
conserved., Later on, Sinclair [35] published an exact IEM for 2-D steady
transonic flows, which is similar to Erickson's [34] method.

The study of these integral equation methods shows a very good potential
for IEM to challenge widely used FD methods and to replace FD methods in some
fields of potential transonic flows, but, the development of the IE method is
far from complete. Therefore, it is a challenge task to devé]op transonic

integral equation methods.

2. ADVANTAGES OF INTEGRAL EQUATION METHODS

The integral equation method has several advantages over the finite
difference method. The IE approach involves evaluation of integrals, which is
more accurate and simpler than the FD approach in which the accuracy depends
on the grid size. In IE approach, grid refinement and high order source-
vorticity and compressibility modeling can be used in order to increase the
accuracy. Moreover, the IE method automatically satisfies the far-field

boundary conditions as 0(1l/r) or 0(l/r2) and hence a small limited region




around the source of disturbance is needed. In FD method, grid points are
needed over a large region around the source of disturbance and special
treatment is required to satisfy the far-field boundary conditions. The IE
method is computationally inexpensive, particularly for unsteady flows, and
does not suffer from the artificial viscosity effects as compared to FD method

for transonic-flow-shock-capturing.
3. FORMULATION

The work presented here is for steady, inviscid transonic flows around
two-dimensional configurations.
(a) Differential Governing Equation and B.C.'s

The governing equations of the two-dimensional, steady, inviscid
compressible flow are given by

Conservation Of Mass
* * * *
* * =
(o 3*) *+(p 2%, 0 (1)
Conservation of Energy

*2 *2
a:2 +‘1?£ V:Z =at lzl (2, +2,%) (2)

Isentropic Gas equation

p*/p: - (a*z/a*i) 1/y-1 (3)

where Q* is the total velocity potential, a” is the speed of sound, p* is the
density, y is the ratio of specific heats, and the subscript = refers to the
freestream condition. Combining equations (2) and (3) and using V:, p: and a
length & (% is the chord of airfoil) as the reference parameters, we obtain

the dimensionless equation for the density p



1
2-d -l

= [1 + _2- M2 (4)

where M_ is the freestream Mach number.
The dimensionless form of equation (1) is given by
<I>xx * sz =G (5)
where

6= -2 (o, 8 +0p, ) (6)
The boundary conditions are given by
(i} Surface No-Penetration (kinematic) Condition
Ven =0 on g(r) =0 (7)

(ii) Kutta Condition

AC =0 (8)
PlTE

(iii) Infinity Condition
v3+0 away from g (9)
where V is total velocity vector, g(r) = 0 is body (airfoil) surface, Cp is

pressure coefficient and TE refers to the trailing edge.

(b) Integral Equation Solution
The integral equation solution of Eq. (5) for a two-dimensional

configuration is given in terms of the velocity field by

V(x,z) =e_+ 45 9 (s) {x=8) 1 + (z- C)k ds
(x- a) + (z-0)°
¢ ,Y (S) (Z C) 1 - (X 5) k (10)

(x-F,) + (z-0)°




2) (x-8) 7 + (z-¢) k

dgdg
(x-F,)2 + (z-C)2

+ 5= ] Gle,

(x-8) 7 + (2-¢) k
) ds
(x-8)° + (z-0)°

o & g (s
where S is shock ﬁurface, q and y are surface source and vortex distribution;
respectively.

In Eq. (10), first integral is the contribution of the body thickness;
second integral is the contribution of 1lifting or 1ifting and thickness or
thickness only; third integral is the contribution due to the compressibility;
while last integral is contribution due to shock.

Not all of the first and second integral terms in Eq. (10) are
necessarily included in the calculation of the velocity field. For symmetric
flows, either first integral or second integral can be used; while for
asymmetric flows, either second integral or both integrals should be used.

Note that the integrand of the volume integral of Eq. (10) decreases
rapidly with increasing distance not only because of the factor
1/((x-§)2 + (z-C)Z) but also because G diminishes rapidly with increasing
distance. Consequently, for computational purposes, the volume integral needs
to be addressed only within the immediate vicinity of the body.

The reader should notice that the difference between the present
formulation and the formulations given by Sinclair [35] and by Tseng and
Morino [36]. The present formulation is based on the velocity field in which
the source term G contains first order derivatives of density only, and the
normal velocity is discontinuous across the shock. The Sinclair and Tseng and
Morino formulations are both based on the velocity potential in which the

source term G contains first- and second-order derivatives of the velocity




potential and the velocity potential is continuous across the shock. The
present formulation has two advantages over the velocity-potential
formulation: (1) only first-order derivatives need to be calculated by finite
differencing, and (2) one does not need to calculate derivatives of the
velocity potential in'order to detect the shock formation since the velocity

field is calculated directly in the present formulation.
(¢c) Shock-capturing and Shock-fitting Technique

Before switching to the next section for numerical procedure it is worth
discussing the last integral term of Eq. (10).

For treating transonic flows, we consider two techniques - shock-
capturing and shock-fitting techniques. Although these techniques are well
known, we examine here their application to the integral equation formulation.

In the shock-fitting technique, the contribution of the shock to the
velocity field is represented by an explicit surface - integral term, the last
term of Eq. (10), and the shock strength qg s given by the normal velocity

increment across it. Thus

Ag = = (V1 = Vap) (11)

But in the shock-capturing technique, the last term of Eq. (10) is not
necessarily included, since the volume integral itself implicitly includes the
shock surface contribution [32].

Therefore, for shock-capturing technique Eq. (10) becomes,

(x-E) i + (z-¢) k

ds
(x-E) + (z-0)°

Vx,z) 2ui+wks= Em+é&-¢g Gg(s)

(S)(ZC)'I'(Xg)k
(x- E) ¥ (2-0)°

(12)

1
+ﬁ¢gy




)(x£)1+(zc)k
(x-i) + (z- C)

dgdg

v 3= 116 (5,0

We will use both shock-capturing and shock-fitting techniques for present

work.

4. SOLUTION PROCEDURE

The whole solution procedure will be described by three parts: (1)
discretization of equations, (ii) iterative procedure for subcritical flows,

and (iii) treatment of critical flows.
(i) Discretization of Equations

Eq. (12) expresses the solution to the potential equation, Eq. (5), as the
sum of four terms, the first three terms are the standard panel method terms
and the last term is a volume integral in the field described above. The
airfoil surface is divided by a number of straight panels with linear source
and/or vortex distribution. The field is divided into a number of rectangular
meshes except at the airfoil surface where trapezoidal elements are used. The
value of G is taken to be constant over each mesh. Figure 1 shows the airfoil
panels and field meshes. After discretization of equations, the integral

equation solution, Eq. (12), becomes

N
v - 1 (x-5)1+(z C)k
Vix,z) =e_+2=2 g

Im 17 K T (x-p)2 4 (2-0)2 “

p N (z-€) T - (x-E) K

b1y L2TEI1 - XTE) Ko (13)

kel 5 (x-g) % (z-0) 2



1 M oM | (x-€) i + (z-€) k

+5=% I 6 : — dgd
J Ay (B + (2=0)

T =1 k=1

where N is total number of surface panels, IM x JM the total number of field

meshes, Aij the area of each field meshes.

(ii) Iterative Procedure for Subcritical Flows

The main difference between standard panel methods and integral equation
methods (or field panel methods) is due to the volume integral term in Eq.
(13). This term is a non-linear term and therefore unlike the standard panel
method, the solution cannot be obtained directly and an iterative procedure is

necessary. For simplicity, we discuss the iterative procedure for subcritical

flows first.
The iterative cycle is described below.

Step 1

A standard panel method calculation, with G = 0, is employed to get qg

or .
Yg
Step 2
Calculate G for each mesh by using the linear compressibility,
G = Mi Uys where u, is calculated from the results of Step 1.
Step 3

Enforce the no-penetration condition and Kutta condition to get new dg

or yg. In this step, the contribution of G is included.

Step 4
Calculate G by using non-linear compressibility, Eq. (6). In this step,
we first calculate ®, and &, by using Eq. (13), compute density (p) by Eq. (4)

and Py and p, are computed by central differencing for subcritical flows.

10



11

Steg 5

Enforce no-penetration condition and kutta condition again to solve for

new qg or Y4 -

Step 6

Repeat Steps 4 and 5 until g, or y_ and G converge. In
g

g
each step, the pressure coefficient is computed by

v
cp = — {11+ GEw2 -3 7T -y (14)
™,
where V = |V| . Note that when calculating the pressure on the surface, the

self-induced velocity must be treated carefully.
(iii) Treatment of Critical Flows

Several key points have been used for treating transonic flows with
shocks:

(1) For the critical flow with shocks, a mixed type finite difference
must be applied to calculate Py and P, consistant with the mixed nuture of

transonic flow. The local Mach number is calculated by

M = VMw/plE-l— (15)

(2) The conditions behind the shock are determined by using the Rankine-
Hugoniot relations:
_ 2
(y-1) Min * 2

v = v (16.a)
2n (y+1) an In

(16.b)

2t 1t



2
(y+1) M
1n (16.¢)

)
(y-1) M?B +2 1

(3) Shock panels are introduced in order to sharpen the discontinuity in
flow properties. The panels are added after several iterations when the
location of the shock is fixed. The orientation of the shock panels is
determined by Rankine-Hugoniot equation.

Ly
_ =1 r1.2 sin (B8) sin (©) , 1 2
pesin” —gtrme— * 2] (17)

1

where B is the shock angle and 6 is the relative direction of the flow behind
the shock to that ahead of the shock. The strength of shock is give by

2 V1n.

= - - = - 2 1
GE = (Vln Vzn) Y—;T. (1 F), Mln> 1.0 (18)
in

5. NUMERICAL EXAMPLES

A scalar program has been developed to implement the solution procedure
of the shock capturing-shock fitting technique. To prove the concept and
verify the algorithm, the code is applied to NACAOOl2 airfoil at different

Mach numbers and different angles of attack.

CASE A Subcritical Flows

Fig. 2 shows a comparison of the present results with experimental data
for incompressible flow at a = 00 , A total of 140 panels is used for whole
calculations over upper and lower airfoil surfaces. Two different modeling
options, source panel modeling and vortex panel modeling, are applied
respectively. The comparison shows that the vortex panel modeling is better

than the source panel modeling.
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Fig. 3a through Fig. 3c are for the case of a =0, M_=0.72 . Fig. 3a
gives the comparison of the results of the two different modeling methods with
Euler's solution, and it is again shown that the vortex panel modeling is
better than the source panel modeling. Fig. 3b shows the effect of the size
of computational domain, while Fig. 3c shows that the present solution
compares well with Euler's solution.

The next case illustrated is a 1ifting case with a = 2% and M_ =0.63 .
Fig. 4a shows the effect of the size of the computational domain and Fig. 4b
shows the comparison of present solution with finite difference solution of

the full potential equation.
CASE B Critical Flows

Fig. 5a shows the present results compared with the experimental data and
Garabedian's finite difference solution. The computational domain used is
2c x 1.5 ¢ as shown in Fig. 1. The properties behind the shock are calculated
using Rankine-Hugoniot relations as given by Egs. (l6.a) - (;6.c). The
results show that the present integral solution method is capable of capturing
a sharp shock. The location and strength of the shock calculated here are in
a very good agreement with the experimental data and the finite difference
solution. Fig. 5b shows the effect of shock panels on the shock strength.
The comparison shows that the shock panels are effective for sharpening the
shock. Fig. 6 shows the 1ifting case result for a«a =2% M = .75, The

comparison shows good agreement.

13



6. CONCLUDING REMARKS

The standard panel method has been extended to the treatment of transonic
flows. The results presented here show that the method is capable of
capturing sharp shocks. The location and strength of shocks are in a very
good agreement with the experimental data and finite difference solutions.
Introduction of shock panels sharpens the shock with relatively coarse
grids. Presently, the method is applied to unsteady transonic flow cases
where the unsteady density term is treated as another volume integral term. A
time-splitting finite difference scheme is used to step the equation in time
while the integral solution is used to compute the spatial variation. The

full length paper will include transonic flow cases in pitching motion.

14
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